Membership renewals open for 2024 - Click here

International

NSW Tech Night: Dynamic Earth Models for frontier kimberlite exploration

Tuesday, August 20, 2024
1800
1900

Title: Dynamic Earth Models for frontier kimberlite exploration

Speaker: Nicolas Flament

Date and time: Aug 20, 2024 1800 (NSW)

Regstration: https://us02web.zoom.us/webinar/register/WN_M9Emiw4nQueg05JnWFofDg#/registration

Abstract: 

Understanding mantle convection plays a frontier role in advancing kimberlite exploration. Kimberlite melts, which commonly transport diamonds from depths of over 120 km and occasionally more than 660 km, commonly form at approximately 300 km depth. This study investigates the deep mantle processes that transport heat to the source depths of kimberlite magmatism. Possible kimberlite formation environments include the lower mantle and transition zone, subduction zones, and mantle upwelling regions.

We leverage the proposed statistical relationship between kimberlites and basal mantle structures to create global maps of relative kimberlite potential. These maps reveal the association of kimberlite eruptions with both fixed and mobile basal mantle structures over the past 320 million years. The findings suggest that broad mantle upwelling, rather than narrow mantle plumes, may link kimberlite eruptions to deep Earth processes, transporting heat to shallower depths where localized geodynamic processes induce eruptions.

 

 

 

The tectonic and volcanic history of Northern Zealandia

Wednesday, July 17, 2024
1800
1900

Title: The tectonic and volcanic history of Northern Zealandia

Presenter: Maria Seton, Associate Professor and Associate Head of Research in the School of Geosciences, University of Sydney

Date and time: Wednesday, 17th July 2024 at 1800

Registration: https://us02web.zoom.us/webinar/register/WN_3IrP_IRSTnuXe_54PdglaQ

Overview:

A defining characteristic of the southwest Pacific is the significant amount of continental crust and volcanism distributed throughout the region. This includes the world’s largest submerged continent, Zealandia, which separated from eastern Australia and Antarctica in the Cretaceous during the final phase of Gondwana break-up. A large knowledge gap in the tectonic and volcanic history of Zealandia has been the location and continuity of the Mesozoic subduction related magmatic arc and the Late Cretaceous to Eocene rift-related volcanics. In addition, widely distributed, intraplate Cenozoic volcanism, which appears to pockmark much of Zealandia, has been difficult to explain via existing models. To address these gaps in our understanding, we conducted several research voyages on the RV Investigator and its precursor, the RV Southern Surveyor. We undertook a series of dredges, informed by seismic reflection profiles, to target places where basement outcrops at the seabed. We performed detailed geochronological and geochemical analysis of these samples and combined this with regional geophysical data interpretation to determine the location and orientation of the Mesozoic Gondwana magmatic arc axis (Median Batholith) from New Zealand through to the northern reaches of Zealandia. We further mapped the extent of Late Cretaceous to Eocene rift-related volcanics and their relationship to strong positive magnetic anomaly signatures in the region as well refining the age and extent of plume related volcanism within Zealandia. Our work has provided the first offshore reconnaissance geological mapping of the Zealandia continent, of critical importance for understanding the Mesozoic geological history of pre-breakup Australia, New Zealand and New Caledonia, which in turn is the basis for exploring the mineral potential hosted within these regions.

 

Bio:

Maria Seton is an Associate Professor and Associate Head of Research in the School of Geosciences, University of Sydney, and a former ARC Future Fellow and Australian Postdoctoral Fellow. Her research focusses on using the marine record to understand global to regional plate motions, the relationship between deep Earth processes and those happening at the surface and the role of tectonics in modulating Earth's long-term climate. She has been involved in several marine expeditions and leads research projects with university, government and industry partners. Maria has a passion for science communication and has received extensive coverage for her research in the media. She also has a passion for changing the public perception of the Australian continent, from one that ends at the coastline to one that extends hundreds of kilometres offshore, and where vital information about the evolution of our continent can be found. 

 

NSW Talk - A New Integration Approach Led to the Discovery of a New Deep-seated World-classPorphyry Copper Deposit

Wednesday, June 19, 2024
1800
1900

Title: A New Integration Approach Led to the Discovery of a New Deep-seated World-classPorphyry Copper Deposit

Presenter: Hojat Shirmard

Date & Time: Jun 19, 2024 @ 1800

Registration: https://us02web.zoom.us/webinar/register/WN_UeuOVLT_STepGirRj7z5rQ#/registration

Abstract: 

The discovery of a new deep-seated world-class porphyry copper deposit named Sereydoun resulted from a distinctive approach to processing, analyzing, and interpreting airborne geophysical data and satellite images in the cluster of Sarcheshmeh copper porphyry mine. This area, which was becoming a tailings dump for the Sarcheshmeh mine, has now become one of Iran's largest porphyry copper deposits after drilling more than 100,000 meters of exploration boreholes, with a reserve of approximately 3.5 billion tons of copper, an average grade of 0.4%, and a cutoff grade of 0.15%. Several porphyry and epithermal copper and gold potential regions were also introduced for further investigation. Following the lithogeochemical survey, interpretation, and integration of the data, the ideal exploratory drilling locations for Sereydoun were determined. The approach used in this study can play a significant role in other places looking for epithermal and deep porphyry copper and gold deposits.

 

Bio: 

Hojat is a PhD candidate in the EarthByte Group, School of Geosciences, University of Sydney. He holds a MSc degree in Mining Engineering – Mineral Exploration from the University of Tehran. He has experience doing more than 200 mineral exploration projects in different districts of Iran including geophysics, remote sensing, geology, and geochemistry. He has a track record of being involved in discovering a variety of ore deposits through a combination of fieldwork, processing, analysis, integrating a variety of exploration data in industry-based projects. He is now working on “Spatio-temporal Data Mining in Mineral Exploration”. His research has implications regarding developing sustainable mineral exploration in the era of the green energy transition.

ASEG NSW - Joint ASEG (NSW) & SMEDG Technical Talk + Lindsay Ingall Memorial Award

Thursday, May 23, 2024
1730 for 1800 start AES
2000 AES

Title: NextGen Geoscience Professionals: What is important for their career development

Presenter: A team of young geoscientists from Fender Geophysics.

Date and Time: May 23, 2024 at 1800 AES

Location: Level 2, Club York (99 York St. Sydney. Room: ‘ANZAC’) + Zoom

Registration: https://us02web.zoom.us/webinar/register/WN_iMKDwSunS0qualVCL_0XDg#/registration

 

Abstract:

NextGen Geoscience Professionals: What is important for their career development

Educating the next generation of geoscientists is a constant discussion in many forums around Australia. However, formal education as part of a degree program is only a partial aspect of career development. Education generally happens under an instructor's guidance and may involve both theory and practice often within a school or university. Whereas training is usually more focused on practical skills and can be provided either in an educational setting or on the job. Mentoring also provides a significant role in career development and is also seen as crucial for bridging generational differences in the workplace.

This talk is going to focus on the importance of community, mentorship, and career development. Or more specifically, the importance of mentorship and how that builds a strong sense of community. To support this vision, we will have some early career geoscience professionals from a range of backgrounds provide insights into why they started careers in the industry and give their feedback on the community as it is now, how they would like to see it in the future, and some of their thoughts on how to reach that goal.

As a special highlight of the evening, we will be presenting the Lindsay Ingall Memorial Award to the family of the late Bob White in recognition of his outstanding contributions to the field of exploration geophysics.

 

 

ASEG Annual General Meeting 2024

Tuesday, April 30, 2024
1730
1930

Agenda for ASEG Annual General Meeting 2024

 

Meeting Venue & Date: 30 April 2024, XXXX Alehouse 20 Paten St, Milton QLD 4064
Meeting time: 5.30pm (AEST)
Zoom Registration link. https://us02web.zoom.us/meeting/register/tZIkduyvrj4pGtfXoAxDHMTFGTIsQHlLO1_m
Chairs:  Eric Battig and Janelle Simpson
Guest Speaker: Dr Tim Dean, Specialist Project Geoscientist, AngloAmerican

 

Documents:

NSW Tech night: Advanced geomodelling to reveal buried deposits

Wednesday, April 24, 2024
1800
1900

Title: Advanced geomodelling to reveal buried deposits

Presenter: Addison Tu

Date and time: Wednesday, 24th April 2024 at 1800 (NSW)

Registration: https://us02web.zoom.us/webinar/register/WN_uVDLEHa8TFOByizyPdGRAQ

Abstract:

Porphyry deposits are of important societal significance as critical sources of copper. 

Copper demands are projected to increase significantly to supply the transition to net-zero, but discoveries have dwindled in recent decades. The finite number of deposits exposed at the surface are nearing depletion, and advancements to exploration techniques must target buried deposits. Here we present a workflow which incorporates machine learning predictions for deposit formation within the crust, with a highly calibrated landscape evolution model to track the vertical motion of deposits through geological time. The results inform where deposits may be preserved and at what depth, or where deposits have been destroyed by erosion. We tested this approach on the mountains of New Guinea, which feature abundant volcanism responsible for deposit formation at depth and extreme erosion to exhume deposits toward the surface. Our approach identified high prospectivity in accordance with the spatial extents of known surface deposits, identified several highly prospective regions for near-surface deposits and where deposits have been destroyed by erosion. Our workflow provides a region-scale prospecting tool to de-risk the economic and environmental cost of field-based exploration. Importantly, the workflow is open-source, scalable to other regions and even adaptable to other mineral systems (with constraints on the depth of formation

Bio:

Addison is a PhD student and Research Assistant within the Earthbyte group, working closely with Dr. Sabin Zahirovic and Dr. Tristan Salles. His research focuses on Eastern Australia, particularly concerning the eastward accretion of microcontinents and volcanic arc-islands since the Cambrian. Geological events in this region and period involve the formation of mountains and the closing of seaways, with many implications for climate, past landscapes and environments, and the formation and preservation of economic deposits.

Addison utilises landscape evolution modelling, tectonic models, and thermochronology with a focus on linking Earth’s surface processes and evolution to other Earth Systems such as the tectonics, climate and the ocean. He also has experience developing landscape evolution models and landform design tools within industry.

 

EAGE 6th Asia Pacific Meeting on Near Surface Geoscience and Engineering (NSGE)

Monday, May 13, 2024
0800
1900

The European Association of Geoscientists and Engineers (EAGE) together with the Society of Exploration Geophysicists of Japan (SEGJ) are proud to announce that the 6th edition of Asia Pacific Meeting on Near Surface Geoscience and Engineering (NSGE) with the theme of "Smart Technologies Kind to the Planet" will take place in Tsukuba, Japan from 13-15 May 2024 incorporating the 15th SEGJ International Symposium.  

More information can be found here.

ACT tech talk: What we can and cannot know from unconstrained inversion of regional magnetic field data

Wednesday, September 27, 2023
1600
1700

Title: What we can and cannot know from unconstrained inversion of regional magnetic field data

Presenter: Clive Foss / CSIRO Mineral Resources

Date and time: 4pm (AEST time), 27th Sep 2023

Registration: https://us02web.zoom.us/webinar/register/WN_4o61GZALT9e7daAhyQKDzg#/registration

Abstract:

For many years regional magnetic field data acquired by Geoscience Australia and State and Territory geological surveys has enabled and transformed geological mapping across Australia where many areas are beneath extensive cover and/or pervasive deep weathering. As computing power and availability have increased by orders of magnitude the same data that so successfully supports geological mapping is being re-purposed for building continuous three-dimensional magnetisation models. These models are in some cases accepted by their users in confidence that they are true representations of the subsurface achieved by spectacular powers of computing. However, while aeromagnetic surveys perform extremely well in mapping the horizontal locations and extents of magnetisations, recovery of models of subsurface magnetisation is severely restricted by extensive non-uniqueness. Magnetic field data is so useful for geological mapping because of the dominant expression of shallow magnetisations, in many cases directly beneath a basement unconformity. The sharp curvature of these field variations carries all the reliable information in the magnetic field data. Deeper magnetisations may cause the bulk of amplitude changes in the magnetic field without giving rise to diagnostic curvature of the field. These parts of the magnetisation cannot be reliably assigned to a specific depth or depth range. In space-filling voxel inversions this task is achieved by depth-weighting functions included in the inversion algorithms. It is these functions, not the distribution of magnetisation in the ground, that determine the depth distribution of magnetisation in the models.

I propose separation of features of sharp curvature that carry the most reliable source information (that I term ‘sweet spots’) from the remaining, much less informative field variations. This results in subsurface models that are much sparser in their apparent level of detail. It may seem a negative message, but it is not, because the distilled information can be treated with much higher confidence than continuous models in which it is not clear which aspects can be trusted and which cannot. I use examples of Australian regional magnetic field data to demonstrate analysis and interpretation of sweet-spots suitable for estimation of depth to magnetisation and sweet-spots suitable for estimation of magnetisation direction.      

Biography

Clive is a senior principal research scientist in CSIRO Mineral Resources where he works mostly on magnetic field inversion and interpretation. He has a BSc and PhD from two Earth Science departments where he learnt to integrate studies of physics and geology. His particular interest since his PhD (a long time ago) on Archean rocks of Southern Africa is in the magnetic field expression of remanent magnetisation and how direction of magnetisation can be recovered from magnetic field data. After his PhD Clive taught exploration geophysics at the University of Malaya in Kuala Lumpur where living between the geographic and magnetic equators provoked an interest in low inclination magnetic fields. Clive then moved to Bandung to work for the Bureau of Mineral Resources (BMR, now Geoscience Australia) on the AIDAB funded Indonesia – Australia Geological Mapping Project in Kalimantan. Following that Clive returned to Kuala Lumpur to work as a consultant and for ARK Geophysics based in Kuala Lumpur providing services in gravity and magnetic methods for petroleum companies throughout Southeast Asia. In 1995 Clive moved to Sydney, Australia to work with Encom Technology both contributing to the ModelVision development team and acting as senior consultant on gravity and magnetic projects worldwide. In 2009 Clive moved to his present position in CSIRO. 

ACT Tech Talk: Scalable Streamlining of Ambient Noise Tomography: A Simple Automated Approach for Dispersion Curve Estimation and Quality Control in the Era of Big Data

Thursday, July 20, 2023
1600
1700

Title: Scalable Streamlining of Ambient Noise Tomography: A Simple Automated Approach for Dispersion Curve Estimation and Quality Control in the Era of Big Data

Speaker: Babak Hejrani

Date/Time: Jul 20, 2023 16:00

Bio:

Babak Hejrani is a seismologist specializing in the field of geophysics within GA's Onshore Seismic and Magnetotelluric Section. With a decade-long background as a researcher in academia, Babak joined GA in 2018 and has since made contributions to developing new technologies for passive seismic imaging. He has established fruitful collaborations with international organizations in Europe, Asia and Australia with a primary focus around developing and implementing advanced imaging technologies that provide enhanced insights into the lithospheric structure of Australia. Babak strives to push the boundaries of seismic imaging, enabling more accurate interpretations of subsurface features.

Teams meeting:

Microsoft Teams meeting
Join on your computer, mobile app or room device
Meeting ID: 429 910 034 185
Passcode: jbC4ve
Or call in (audio only)
+61 2 8318 0003,,834313932#   Australia, Sydney
Phone Conference ID: 834 313 932#

IMAGE 23

Monday, August 28, 2023
0800
1900

International Meeting for Applied Geoscience & Energy (IMAGE)

28 August–1 September | Houston, Texas

The SEG are pleased to extend an invitation to you on behalf of the American Association of Petroleum Geologists (AAPG), the Society of Exploration Geophysicists (SEG), and the Society for Sedimentary Geology (SEPM) to the 2023 International Meeting for Applied Geoscience and Energy (IMAGE) at the George R. Brown Convention Center in Houston, Texas. The event will take place from 28 August to 1 September, marking our third year of scientific excellence and collaboration at the premier meeting for energy professionals.

Pages