Membership renewals open for 2024 - Click here

TAS tech talk - Insights into the 2018 eruption of Kilauea Volcano from ambient seismic noise and the application of seismic noise for imaging and monitoring in mines.

Event Type

Event Date

Thursday, February 27, 2020

Event Location

Event Address

Earth Science tea room (upstairs from the main entrance)

Event Start

1730

Event End

1900

Event Details

On Thursday 27 February, Dr Gerrit Olivier will present Insights into the 2018 eruption of Kilauea Volcano from ambient seismic noise and the application of seismic noise for imaging and monitoring in mines.  This is a joint meeting with the Tasmanian branch of the GSA.  As ever, it will be preceded by drinks and nibbles at 5:30 pm in the Earth Science tea room (upstairs from the main entrance), with the main event following at 6 pm in the lecture theatre (back downstairs).  Gerrit’s abstract is also attached.

Gerrit obtained his PhD in Geophysics from the University Grenoble Alpes in France after completing an MSc and BSc in Theoretical Physics at the University of Stellenbosch in South Africa. He is currently a Director and heads up the Applied Geophysics group at the Institute of Mine Seismology – the world’s leading provider of seismic monitoring technologies for mines. He also serves as a Senior Adjunct Researcher at the University of Tasmania and and an Associate Researcher at University Grenoble Alpes in France. He has received awards from the American Geophysical Union and the Institution of Civil Engineers for his research in applying seismic noise interferometry to monitor and image underground mines and tailings dams.

Abstract:

Insights in to the 2018 eruption of Kilauea Volcano from ambient seismic noise and the
application of seismic noise for imaging and monitoring in mines

Ambient seismic noise interferometry is a method that enables seismologists to extract useful
information from faint background seismic noise. The method can be used to image the
subsurface with high resolution and/or monitor time-lapse changes in seismic velocity with
high accuracy in nearly any environment, without the need for active sources or earthquakes.
In this presentation, I will show how applying seismic noise interferometry has helped us
gain valuable insights in to 2018 eruption of Kilauea volcano. The 2018 Kilauea eruption was
a complex event that included deformation and eruption at the summit and along the East Rift
Zone. The eruption lasted three months and emitted around 800 million cubic meters of lava,
destroying more than 700 homes in the process. We used ambient seismic noise
interferometry to measure time-lapse changes in seismic velocity of the volcanic edifice prior
to the eruption. Our results show that 10 days before the eruption, there is a clear change in
the response of the seismic velocities to applied pressure. We also applied ambient seismic
noise tomography to image the state of the volcano after the eruption. The results of this
study will have implications for forecasting volcanic eruptions and our understanding of the
behaviour of volcanoes leading up to major eruptions. Finally, I show how the methods we
applied to Kilauea volcano are currently being used by the Institute of Mine Seismology to
monitor underground mines and tailings dams, while also being used as a cost effective and
environmentally friendly method for mineral exploration.