Airborne Electromagnetics for definition of manganese mineralisation: a case study in the Eastern Pilbara region, Western Australia
Consolidated Minerals Limited (“CML”) is an independent private company incorporated in Jersey. CML is a manganese and chromite ore producer with operations in Australia and Ghana, complemented by a trading-arm based in Singapore.

COPYRIGHT and DISCLAIMER

- Copyright in the material in this presentation is owned by Consolidated Minerals Pty Ltd and the material should not be copied or disclosed to any other person without the express authorisation of Consolidated Minerals Pty Ltd.
- No express or implied representation or warranty is made as to the fairness, currency, accuracy, completeness, reliability or reasonableness of this presentation, or any opinions, conclusions and forward-looking statements it contains.
Contents

- Previous work
- Case study area
 - Location + design
 - AEM system specifications
 - Data profiles and channel grids
 - CDI processing
- Conclusions
Location

- Woodie Woodie Manganese mine is located in the East Pilbara region of Western Australia.

- The mine consists of approximately 100km2 of mine corridor and 5500km2 of greenfields area outside of this corridor.

- Pilbara Manganese supplies high-grade ore to the international steel industry.
Stratigraphy

- Manganese in the Woodie Woodie region is hosted by Carawine Dolomite, chert breccia, and the overlying Manganese Subgroup sedimentary rocks.

- Orebodies show a range of orientations, from stacked bedding-parallel lenses (stratabound) to steeply dipping or plunging bodies (fault hosted).

- Average deposit size is 0.5Mt (0.2 – 5.5Mt), generally 50-100m wide, 100-600m long and deepest ore zones extend 200m below surface (open at depth).

From Jones, 2011
Physical Properties

- Manganese (Mn) is often conductive compared to host rocks
 - Chert and dolomite are resistive
 - Permian clays and Jeerinah formation black shales are conductive and must be accounted for during processing/interpretation

- Conductivity response related to mineralisation can depend on Mn mineral type, grade and iron content
Initial AEM Surveying

- A HoisTEM survey was flown by GPX surveys over the Woodie Woodie mine corridor in 2002
 - Discrete targets were interpreted and a number tested by drillholes
 - Chris D deposit was an EM discovery – mineralisation below 30-50m of conductive cover

- AEM surveys were flown over regional project areas based on the success of targets from the HoisTEM survey
Case Study Area Location

- Bee Hill
 - Regional project area
 - Approximately 60km SW of Woodie Woodie mine

- Case study area chosen based on detailed geological mapping, previous drilling and geophysical surveying
Case Study Area
Geology
Case Study Area
AEM Systems

- Three heli-borne AEM systems were flown over the case study area
 - RepTEM in May 2008 by GPX Surveys
 - VTEM in May 2009 by Geotech Airborne
 - XTEM in November 2009 by GPX Surveys
Case Study Area

System Specifications

<table>
<thead>
<tr>
<th></th>
<th>RepTEM</th>
<th>VTEM (12)</th>
<th>XTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment (Am²)</td>
<td>112 000</td>
<td>400 000</td>
<td>102 000</td>
</tr>
<tr>
<td>Duty Cycle (%)</td>
<td>25</td>
<td>36.7</td>
<td>25</td>
</tr>
<tr>
<td>Waveform shape</td>
<td>Square</td>
<td>Trapezoidal</td>
<td>Square</td>
</tr>
<tr>
<td>Ramp Off (µs)</td>
<td>40</td>
<td>1340</td>
<td>45</td>
</tr>
<tr>
<td>Data Channels</td>
<td>21</td>
<td>28 (35*)</td>
<td>30</td>
</tr>
<tr>
<td>Along line sampling (m)</td>
<td>9</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

- Historically, systems with resolution in the early times were considered ideal for near-surface, moderately conductive bodies.

- New geology model suggested deeper bodies and structural relationship important.
Case Study Area
Survey Specifications

- Flight line direction for all systems was E-W, perpendicular to geology and structures of interest
- Line spacing was determined for each system based on the transmitter parameters and resolution of manganese targets
 - 80m for RepTEM and XTEM
 - 100m for VTEM
- Traditionally, AEM systems measure the time rate of change of the magnetic field (dB/dt) = RepTEM and XTEM
- VTEM calculates the B-field data from dB/dt, equivalent to a direct measurement of the magnetic field
Case Study Area
Prospect of Interest

-38000m
-39000m
L2740 RepTEM
L19940 VTEM
L40100 XTEM
-40000m
-19000m
-20000m
-21000m
-22000m
500m
N
13
Case Study Area
Data Profiles

RepTEM

XTEM
Case Study Area
Data Profiles

VTEM B-field - original

VTEM B-field - reprocessed
Case Study Area
Channel Grids

- Each time channel was gridded for the three systems, including both B-field and dB/dt, original and reprocessed data for the VTEM survey
 - Earliest time channel available (not noise)
 - Mid-time channel
 - Latest time channel (before signal over-ridden by noise)
Case Study Area
Conductivity Depth Imaging

- EM data from each system was inverted using EMFlow software to produce a conductivity depth model
- Equivalent lines from each system windowed to the prospect of interest are presented
 - L2740 RepTEM
 - L19940 VTEM
 - L40100 XTEM
Case Study
Drilling

Proterozoic shale with Mn ± Fe

7m @ 32% Mn, 20% Fe
4m @ 37% Mn, 19% Fe

Chert/highly silicified dolomite

21m @ 32% Mn, 19% Fe
10m @ 39% Mn, 16% Fe

CDI anomaly outline

50m
Fig Tree – a quick comparison

- Project area approximately 40km South of Woodie Woodie mine
- VTEM survey flown in 2009 using 100m line spacing with lines oriented perpendicular to major structures and lithology trends

- Dominantly resistive host geology, dB/dt and B-field responses very similar
Conclusions

- Three time domain airborne EM systems flown over a case study area with known manganese mineralisation
- Each system showed a discrete anomalous response in channel time data and a conductor in the CDI related to Mn
- High signal to noise and the B-field option of the VTEM system provides an advantage over traditional dB/dt systems
 - shows target into late time channels when conductive overburden response has decayed
- Geology of the survey area should be considered when targeting Mn using AEM
 - Conductive overburden = B-field data for target discrimination
 - Dominantly outcropping resistive geology = dB/dt data provides reasonable targets