Extracting Value from Downhole Data using Quantitative Analytical Techniques

ASEG Downhole Logging Workshop

Perth WA, February 14, 2015
Outline

- Importance of Rock properties
- Where is all the petrophysical data?
- Importance of data quality and consistency
- Quantitative data analysis: benefits and applications
- Examples and case studies of extracting value from quantitative data
 - Nickel example
 - Iron ore
 - Gold
Importance of Physical Rock Properties

- Physical properties are the quantitative link between geology and geophysics.
- Respond to lithology, mineralization, alteration, porosity, and mechanical rock properties
- Capable of providing key insights into ore grade, ore delineation, geometallurgy, geotechnical properties and hydrogeology.
- Can be used for unbiased classification into rock property domains and establish proxy relationships.
- Applications include:
 - Objective rock type classification – assist with core logging
 - Providing inversion constraints
 - Reliably “in fill” and predict values for expensive or time consuming ex-situ tests
 - Estimating ore grade, recovery, and geometallurgical parameters
Where is all the Petrophysical data?

- The missing link?
- Why are rock properties rarely measured in mineral exploration?
- Standard practice in the oil and gas industry – 100% of drill holes are logged with petrophysics
- DGI estimates in-situ rock properties are measured on only 2% - 5% of drilled metres in Canada
- Often completed as an afterthought – rarely proactively planned for, or considered as part of an exploration budget
Drill Program Costs for Advanced Exploration in North America

Recent Poll of North American Projects (multiple sources):

Typical “all in” Drill Program Costs = $600/m
Includes: camp, supervision, drill contractor, core logging, geochemistry/assay costs

Geochem analysis typically $65-100/sample for 64 element suite or 10% of “all in” drilling budget.

200 hole program with average depth of 400m x $600/m = $48 million total cost
Including an estimated $5.2 million on geochem analysis

What are the typical borehole logging costs for such projects????
The 2-4C Process: **Overview**

- Robust, data-driven technique.
- Uses a combination of data validation, machine learning, cluster analysis and conventional statistics.
- Creates unbiased classification schemes and builds proxy relationships from disparate datasets.

INPUTS (DRILLING)
- Lithology
- Geochemistry
- Geometallurgy
- Geotechnical
- Physical Rock Properties

OUTPUTS (2-4C PROCESS)
- Unbiased classification schemes
- Proxy relationships between traditionally isolated datasets.

KEY APPLICATIONS
- Objective rock type classification.
- Intelligent survey design.
- Linking geology and geophysics.
- Providing inversion constraints.
- Estimating ore grade, recovery, geotechnical and geometallurgical parameters.
Why 2-4C?: **Integration v. Isolation**

- No definite visual correlation between core-logged lithology and individual physical properties.
- Rather than looking at each parameter in isolation, consider them together (clustering!).

Integration v. Isolation
Why 2-4C?: Integration v. Isolation

- For example:
 - Same core logged lithology (indicated by box) has distinctly different magnetics signature.
 - Considering just magnetics data for identification would have been insufficient.
 - Lithologies often have multiple physical rock properties signatures.
Why 2-4C?: Multi-Modal Distribution Problem

- Correlating subjective core-logged geology with individual physical properties parameters often results in multi-modal distributions – undesirable.
- Classifying the rock quantitatively using the 2-4c process eliminates this problem resulting in a robust and consistent classification scheme.
- Better at mapping variation and classifying the rock into domains that are more relevant to geometallurgy, geotechnical, and geophysical applications.
3D Cross Plot of Rock Property Data

classified by core-logged geology

classified by rock property domains
Iron Ore Case Study: **Introduction**

- Iron Ore deposit in Eastern Canada.
- 70 boreholes of data; physical properties logged by DGI.
- **Inputs:**
 - Physical properties
 - Logged geology from client
 - Geochemical assay results
- **Outputs**
 - Petrophysical domains created using physical rock properties
 - Proxy data and infilling of missing data
Iron Ore Case Study: Physical Rock Property Domains

- 4 physical rock properties on 70 boreholes analyzed to create statistical clusters.
- Correlation between clusters and logged geology.
- Hematite zone identified from physical properties, missed by core logging (later confirmed by assay results).
Iron Ore Case Study: **Proxy Relationships**

- Same four rock properties have been used to produce proxies for various parameters.
- Proxies created using a robust, empirical correlation matrix.
- Bars: assay values.
- Lines: DGI prediction.
Iron Ore Case Study: **Proxy Relationships**

- Illustrated is a cross-plot of predicted and assayed hematite values.
- Correlation coefficient of 0.95.
Iron Ore Case Study: Proxy Relationships

- Assay values missing for regions of low core recovery (indicated by the arrows).
- Able to fill in missing data using proxy relationship results.
Kami Project - Alderon Resources

Initial Deliverables for DGI Participation

• Interpreted optical televiewer (OTV) for complex structural geology
• Quantitative magnetic susceptibility for % magnetite estimates
• Near focus density for specific gravity
• Initial geotechnical assessment with acoustic televiewer (ATV) and full waveform sonic

Additional Drivers

• Maximize the amount of data to leverage the drilling investment
• Compress timelines

Accomplished

• 120 Boreholes surveyed over 2 years
• Quantitative physical rock properties data taken in 10 cm intervals for a statistically robust dataset

Results

• All deliverables accomplished
• Prediction of assay results through the 2-4C Process – i.e. understanding sooner
• Saved 9 months and 17 boreholes for the geotechnical program (approx. $4 million in cost savings)
Decar Project

- Low grade/high volume disseminated Nickel - Awaruite
- Physical Properties acquired in-situ
- Goal - quantitative characterization of ore and host rock
 - Describe rock types quantitatively with physical properties
 - Augment traditional geologic logging and geochem/assay sampling
 - Maintain or improve quality and accuracy
 - Increase speed, data density and relevance
 - Applications in sequence: Resource, Structural, Geometallurgy, Rock Mechanics, Geotechnical, Mine Planning, Production Optimization
- Optical and Acoustic Televiwers acquired in-situ
- Ultimate application = Ni recovery prediction
Decar Preliminary Observations

• Geologically indistinct
 – >90% Peridotite; varying degrees of Serpentinization – non-visual
 – Not relevant to recoverable Nickel

• Geochemically indistinct
 – Closed system - homogeneous from a geochemical perspective
 – Not relevant to recoverable Nickel

• Physical Properties Domains reveal variation
 – Reveals variation in Peridotite
 – Maps to recoverable Nickel

• Televiewers
 – Dyke corrected orientation for true thickness and volume contribution
Decar program data acquisition summary

- Approximately 25,000 metres; 69 boreholes
- 54 boreholes surveyed – partially or completely
- 3 attempted in 2010; 25 of 31 in 2011; 29 of 35 in 2012
- Physical Properties acquired:
 - Density, Magnetic Susceptibility, Resistivity, Induced Polarization, Neutron, Natural Gamma
- Optical and Acoustic Televiwer acquired
- Gyro for x,y,z positional accuracy acquired
Borehole #2: Recoverable Ni Prediction Results
Recoverable Ni (Lab Measurement) vs Recoverable Ni Prediction from Rock Property Data Boreholes # 1 and 2

- $R^2 = 0.9216$
<table>
<thead>
<tr>
<th></th>
<th>DTR Ni</th>
<th>DTR Ni Prediction</th>
<th>Chargeability</th>
<th>Density</th>
<th>Magnetic Susceptibility</th>
<th>Natural Gamma</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTR Ni</td>
<td>1.00</td>
<td>0.97</td>
<td>0.17</td>
<td>-0.19</td>
<td>0.41</td>
<td>-0.18</td>
<td>-0.35</td>
</tr>
<tr>
<td>DTR Ni Prediction</td>
<td>0.97</td>
<td>1.00</td>
<td>0.18</td>
<td>-0.23</td>
<td>0.43</td>
<td>-0.17</td>
<td>-0.33</td>
</tr>
<tr>
<td>Chargeability</td>
<td>0.17</td>
<td>0.18</td>
<td>1.00</td>
<td>-0.32</td>
<td>0.30</td>
<td>-0.11</td>
<td>-0.19</td>
</tr>
<tr>
<td>Density</td>
<td>-0.19</td>
<td>-0.23</td>
<td>-0.32</td>
<td>1.00</td>
<td>-0.23</td>
<td>0.38</td>
<td>0.15</td>
</tr>
<tr>
<td>Magnetic Susceptibility</td>
<td>0.41</td>
<td>0.43</td>
<td>0.30</td>
<td>-0.23</td>
<td>1.00</td>
<td>-0.34</td>
<td>0.23</td>
</tr>
<tr>
<td>Natural Gamma</td>
<td>-0.18</td>
<td>-0.17</td>
<td>-0.11</td>
<td>0.38</td>
<td>-0.34</td>
<td>1.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Resistivity</td>
<td>-0.35</td>
<td>-0.33</td>
<td>-0.19</td>
<td>0.15</td>
<td>0.23</td>
<td>0.05</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Lithology compared to 2-4c Classification Au

Lithology vs Au

2-4c Classification vs Au
Data Integration through Physical Rock Properties

Physical Rock Properties

Geology Geophysics Geochemistry Geotech Geometallurgy
Challenges with Data

- Inconsistent data: quality, calibrations, format
- Adhock acquisition programs – missing parameters etc
- Data preparation challenges

- New York times article – Aug 17, 2014 “For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights”
 - “... 80 percent of their time mired in this more mundane labor of collecting and preparing unruly digital data, before it can be explored for useful nuggets.”
 - “It’s an absolute myth that you can send an algorithm over raw data and have insights pop up,”
Raise the Bar on data Quality and Consistency

- Good for all stakeholders – Mineral exploration and mining companies, service providers, equipment suppliers, entire industry
- We can increase the value of downhole logging to any project in the way we plan, execute, and analyze results.
 - The best data in the world is useless if it sits on the shelf
 - inconsistent data is limited in value
 - poorly designed / ad-hock surveys do not provide the robust data sets required for advanced multivariate analytics
- Requires all stakeholders to work together
- Workshops like today are a great start
THANK YOU!